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Abstract

A reducedorder Kalman Filter, basedon a simplification of the Singular Evolutive Ex-

tendedKalman (SEEK) filter equations(Pham et al. 1998),is used to assimilateobserved

fields of the surfacewind stress, seasurfacetemperature and sea level into the nonlinear

coupledocean-atmospheremodelof Zebiak and Cane(1987). The SEEK filter projects the

Kalman Filter equations(Kalman and Bucy 1960)onto a subspacedefinedby the eigenvalue

decompositionof the error forecastmatrix, allowing its application to high dimensionalsys-

tems.

The Zebiak and Canemodel couplesa linear reducedgravity oceanmodel (Caneand

Patton 1984)with a singlevertical mode atmosphericmodel of Zebiak (1986). The com-

patibility betweenthe simplified physicsof the model and eachobservedvariable is studied

separatelyand together. The results showthe ability of the model to representthe simulta-

neousvalueof the wind stress,SSTand sealevel, whenthe fields are limited to the latitude

band 10°S- 10°N.

In this first application of the Kalman Filter to a coupled ocean-atmosphere prediction

model, the sea level fields are assimilated in terms of the Kelvin and Rossby modes of the

thermocline depth anomaly. An estimation of the error of these modes is derived from the

projection of an estimation of the sea level error over such modes. This method gives a value

of 12 for the error of the Kelvin amplitude, and 6 m of error for the Rossby component of

the thermocline depth.

The ability of the method to reconstruct the state of the equatorial Pacific and predict

its time evolution is demonstrated. The method is shown to be quite robust for predictions



i

up to six months, and able to predict the onset of the 1997 warm event fifteen months before

its occurrence.
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1. Introduction

The prediction of the E1 Nifio - Southern Oscillation (ENSO) and its relation with global

climate anomalies is one of the major research efforts in short-term climate forecasting. As

the large-scale climatic variability of the ENSO can be described in terms of low frequency

modes which are successfully modeled by simple linear models, the studies of ENSO have

been supported by a large hierarchy of models, ranging from complex general circulation

models (e.g. Philander et al. 1992; Latif et al. 1993; Kirtman et al. 1996) to one-layer,

reduced-gravity models (eg: Philander et al. 1984; Gill 1985; Hirst 1986; Cane and Zebiak

1987; Battisti 1988; Battisti and Hirst 1989).

The success of the simplified models is due to a combination of two facts. First, the fact

that the inertia ("memory") of the tropical, coupled ocean-atmosphere system lies in the

upper ocean (for more details see Neelin et al. 1994), which has much longer time scales

than the atmospheric component. Second, the fact that the equatorial ocean is characterized

by a stable density structure consistiiag of a warm upper layer and a cool deep layer separalied

by a sharp, near-surface pycnocline. This situation can be well described by the reduced

gravity models which assume that the ocean consists of a thin surface layer of density p

overlaying an infinitely-deep, motionless lower layer of density p + Ap.

The Zebiak and Cane model (Zebiak and Cane 1987), hereafter named ZC, is a nonlinear

model for the anomalies of the system about a basic state derived from monthly mean

climatology of sea surface temperature (SST), surface winds and thermocline depths in the
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tropical Pacific. Although this model wasoriginally developedfor processstudies (Cane et

al. 1986) it gavethe first successfulforecastof an ENSO event and it hassincebeen used

routinely in real-time ENSO forecasts(Latif et al. 1998).

As the memoryof the coupledsystemlies in the ocean,the initialization of the several

ENSOprediction systemshasbeenfocusedmainly on the oceancomponent,in accordwith

the hypothesisthat the coupledstate evolves(in a deterministic way) from an initial state

determinedby the thermal state of the upper-ocean(Caneet al. 1986;Xue et al. 1994;Ji

et al. 1995;Fischeret al. 1995).

In the caseof the ZC model, Caneet al. (1986)usean initialization procedurein which

the oceancomponentis forcedby observedwind stressesstarting in January1964and ending

at the time when the forecastbegins. Then, the computed SST anomaliesare usedto run

the atmosphericcomponent. The final states from the uncoupledcomponentmodels are

usedasthe initial conditionsfor a forecastwith the model run in a purely coupledmanner.

Using this method, the initial conditions of the SST and the winds are assumedto be in

accordwith the thermocline depth but not necessarilywith their current observedvalues

(Caneet al. 1986).

An improvedprocedurewasdevelopedby Chenet al. (1995)allowing the completeinter-

action betweenboth oceanand atmosphericcomponentsduring the initialization process.In

their procedure,the modelwind stressis relaxedtowardsthe observedvaluesby introducing

a nudging term in the wind stressequationsof the atmosphericmodel during the initial-

ization. This nudgingapproachreducesboth the error of the initial condition, and someof

the small-scale,high-frequencymodesappearingwhenthe oceancomponentis forcedby ob-



served wind stress (Chen et al. 1995). As a result, the skill of the ENSO forecasts is greatly

improved. This methodology has been used to perform operational ENSO forecasts. This

method, however, failed to predict the 1997-98 ENSO event, showing the need of further

improvements in the physics of the model (Kleeman 1993; Dewitte and Perigaud 1996), the

assimilation method (Kleeman et al 1995), or the quality of the data as it only relied on

wind observations (Chen et al. 1999).

The positive impact of assimilating subsurface thermal data in a complex GCM model

was shown by Rosati el; al. (1997). Kleeman et al. (1995) improved the initialization of the

intermediate coupled model of Kleeman (1993) by using the adjoint approach to assimilate

subsurface thermal data.

In the case of the ZC model, Chen et al. (1998,1999) study the influence of either new

wind fields or tide-gauge observations to improve the thermocline structure at the initial

time. Both approaches have been able to predict retrospectively the 1997-98 E1 Nifio, with

no need to change the physics of the coupled model.

The impact of SSH observations has been also studied by Xue et al. (2000, manuscript

submitted to J. Climate) using a linear Markov model best fit to the ZC (Blumenthal 1991).

Their results indicate that the prediction skill of the Markov model is better when the sea

level information is used during the training period.

The work presented here follows a similar vein, but with emphasis on an advanced as-

similation methodology, multivariate data sets, and a coupled initialization approach. This

is accomplished by applying a reduced order Kalman filter to assimilate gridded fields of

SST (Reynolds and Smith 1994), the Florida State University (FSU) wind stress analysis
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(Stricherzet al. 1992)and the seasurfaceheight (SSH) anomalies(Busalacchiet al. 1994)

into the ZC model. In a reducedgravity model, the upper-layerdepth D can be related to

the SSH (Gill 1982) by

D(x,y,t) = _ppSSH(x,y,t) (1)

Then, the thermocline depth information is directly assimilated into the ZC model in terms

of the Kelvin and Rossby modes. This method differs from the indirect assimilation used

by Chen et al. (1998) who nudge the Kelvin and Rossby modes of the coupled model to

the modes derived from a previous assimilation of the sea level in the stand-alone Cane and

Patton (1984) ocean model.

This paper represents the first attempt of a direct assimilation of multiple fields in the

fully nonlinear ZC model. Because of the simplified physics of the model, the model shows

discrepancies with each one of the observed fields (Perigaud and Dewitte 1996). These

discrepancies increase when these fields are considered simultaneously. Thus, a preliminary

step must be the study of the compatibility between the observations and the model.

The data used in this study are presented in section 2. Section 3 presents a brief review

of the ZC model and the multivariate EOF basis used to reduce the degrees of freedom of

the assimilation method. The reduced order Kalman filter is presented in section 4. The

compatibility between the data and the model is presented is section 5. The method used to

determine the confidence of each field is presented in section 6. The assimilation experiments,

the measure of the forecast skill and several sensitivity studies are described in section 7.



Finally, a summaryand concludingdiscussionaregiven in section8.

2. The data

a. FSU winds

The wind fields used here come from the monthly pseudo-stress analysis from merchant

ship observations provided by the Florida State University (Stricherz et al. 1992). Hereafter,

these data will be referred to as FSU winds. Research quality pseudo-stresses are available

until 1997. Pseudo-stresses for 1998 are obtained from the quick-look product. Following

Stricherz et al. (1992), a drag coefficient Co = 1.6.10 -3 is used to compute the wind stresses.

Monthly anomalies are computed from the four years running mean, consistent with the

methodology employed by Cane et al (1986). That is, at each month, the reference state is

obtained by the mean between the current month and the respective month for the three

previous years. This methodology is used to remove the long term trend of the data (Zebiak

1989). Finally, field anomalies are filtered with a 1-2-1 filter in latitude, longitude and time.

b. Reynolds SST

Maps of the SST from November 1981 to December 1998 are derived from the optimum

interpolated SST analysis of Reynolds and Smith (1994). Anomaly fields are constructed

from the monthly mean field of the Reynolds fields during November 1961 and December

1996. A 1-2-1 filter in latitude, longitude and time is applied to the anomaly fields.

c. TOPEX/Poseidon altimetry

Monthly anomalies of the thermocline depth are derived from the TOPEX/POSEIDON

(T/P) sea level fields (Busalacchi et al. 1994). The long term surface topography anomaly



mapsareusedto constructmonthly meanmapsfrom January 1993to December1996.Then,

equation (1) is usedto compute the thermocline depth.

Becausethe ZC model projects the dynamic equationsonto the equatorial modes,we

havedecidedto project the thermoclinedepth onto the equatorial Kelvin and severalRossby

modesusingthe method describedin Boulangerand Menkes(1995). Oncethe coefficientsof

the severalRossbymodesarecomputed,the Rossbycomponentof the thermocline depth is

constructedby a combinationof the Rossbymodes.This methodologyhas the advantageof

decomposingthe sealevel observationsinto prognostic variablesof the model, diminishing

the possibleimpact of the incompatibilities between the observationsand the simplified

physicsof the model. In section5, the compatibility betweenthe physicsof the model and

the different Rossbymodeswill beexamined.

In this first application of a reducedorder Kalman Filter, the analysisperiod is limited

to January 1993- December1998. This is the time period for which comprehensiveand

coincident fields of T/P sealevel, wind stressand SST observationsare available for the

model domain.

The temporal evolution of the meridional averageof the zonal wind stress,the Kelvin

amplitude, the first Rossbymode,and the SST anomaliesare given in Fig. 1. A positive

value of the wind stressshowsthe presenceof westerly anomalies(weakeningthe Walker

circulation in the equatorial Pacific). A positive valueof the thermocline depth indicatesa

downwelling,associatedwith an increaseof SST in the east.

A cursoryexaminationof plots in Fig. 1revealsthe basiccharacteristicsof the equatorial

Pacific dynamics, as the large-scalenature of the warm/cold oscillations. Also, the high
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correlation between the SST and the thermocline depth justifies the parameterization of

vertical mixing in the SST equation of the ZC model. Finally, the correlation between

western wind stress anomalies with the eastern sea surface temperature anomalies suggests

how local SST changes are related to remote forcing.

During the period Jan 93 - May 95, westerlies are present in the western Pacific extend-

ing periodically towards the central Pacific where the anomalous wind is easterly. These

easterlies in the eastern side of the basin inhibit the propagation of the downwelling Kelvin

waves generated by the central westerlies, limiting the warming of the eastern waters. After

May 95, easterlies are present over the entire equatorial Pacific, indicating stronger trade

winds. Under these conditions, an upwelling Kelvin wave excited in the central Pacific will be

amplified during its eastward travel, causing a cooling of the equatorial SST. The maximum

strength of the central trades is observed at the beginning of 1996. Then, the wind anomalies

decrease and finally, reverse to westerlies. The amplitude of the westerlies increase rapidly

and propagate to the eastern region, amplifying the downwelling Kelvin waves during all of

1997, thereby warming the central and eastern Pacific water. As the downwelling Kelvin

waves propagate into the eastern equatorial Pacific, an upwelling wave is present in the cen-

tral Pacific since October 1997 preceding the termination of the warm event on December

1997. The origin of this upwelling Kelvin wave (generated by the reflection of Rossby waves

at the western boundary and/or excited by the winds) is not provided by the plots in Fig.

1.

3. Data error estimates



Asthe Kalman filter isaweightedcombinationof a first guessandobservations,ameasure

of the confidenceof the observationshas to be specifieda priori. A simple estimation of the

observation errors is given here.

Following Shriver and O'Brien (1995) the mean wind speed over the tropical Pacific

is approximately 7 m s-1, or 49 m 2 s-2 in pseudostress units. The error in anemometer

measurements of wind speed from moored buoys is approximately 10%. The error associated

with estimates of wind speed and direction is larger than that. Therefore, an optimistic

measure of the error of the wind speed can be given as 10% of the mean wind speed, i.e., 4.9

m 2 s -1 ,_ 0.094 dyn cm -2.

McPhaden et al. (1998) have verified the accuracy of the optimum interpolation SST

analysis of Reynolds and Smith (1994) using independent data. They compute the root mean

square (rms) between the monthly analyzed fields and in situ TOGA-TAO moorings at the

equator at three different locations (110°W, 140°W, and 165°E). The rms was computed

from January 1982 to January 1993. The mean rms differences at each location are 0.38°C,

0.39°C, and 0.24°C respectively. The SST anomaly error used here is obtained as the mean

of these three values, i.e. 0.34 °C.

Cross correlation between T/P altimeter data and dynamical topography fields from

TOGA/TAO data show RMS differences of 4 cm in the equatorial region, but higher values

off the equator (Busalacchi et al. 1994). Smaller error measures have been reported on

monthly and longer time-scales, but a value of 4 cm will be used here, corresponding to an

error of 7 m for the thermocline depth.

As the Kelvin and the Rossby components of the thermocline depth are assimilated
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separately,a distinct error value has to be given to the assimilation algorithm. Here, we

compute an equipartition of the thermocline depth error on two componentsby assuming

that the confidenceof the decompositionalgorithm is similar for eachwave. This is not

really true becauseof the fact that high Rossbymodeshavetheir maximum off the equator,

wherethe reducedgravity approximation is lessaccurate. Thus, our hypothesisis valid only

asthe reducedgravity approximation is valid. Furthermore,assumingthat the errorsof the

Kelvin and Rossbymodeshave zeromeanand are uncorrelated,the error variancecan be

describedas

2

n

because of the following relations

(2)

<ak> = <a,_>= 0,

< akan > = < anam > = 0

where Ck(Y) is the meridional structure of the Kelvin wave, _n(y) the meridional structure

of the n-th Rossby wave, and ak and an is the amplitude of these modes.

The algorithm of Boulanger and Menkes (1996) is used to solve equation (2). The left

hand side term is now a constant for all the latitudes. A minimum of 8 Rossby modes

has to be used for a reasonable reconstruction of such a constant function over the latitude

band of [10°S-10°N]. The error associated with the Kelvin coefficient is obtained directly

by this procedure. The error of the Rossby component is obtained by the longitudinal

average of the second term on the right hand side. Figure 2 shows the errors of the Kelvin

amplitude coefficient (solid line), and the error of the Rossby field (dashed line). The error
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estimates converge as the number of Rossby modes increases. From the asymptotic limits,

ek = (< a_ >)1/2 = 12, and c_ = 6 m. As the Kelvin and Rossby waves are prognostic

variables of the ZC model (Zebiak and Cane 1987), the sensitivity to these values will be

examined later.

4. The model

The standard configuration of the ZC model is used here. The ocean domain is a rect-

angular basin limited by 30°S-30°N and 124°E-80°W. Details of the model equations can

be found in Zebiak and Cane (1987) and Battisti (1988), so only a brief description of the

model is given here.

The dynamical model is a single-layer, reduced-gravity, anomaly model on the equatorial

/5-plane focusing only on the seasonal and interannual time scales. The ocean model has

been simplified to determine only a subclass of all the possible motions: the low-frequency,

long zonal-scale equatorial Kelvin and Rossby waves forced by an anomalous surface wind

stress (Cane and Patton 1984). As the Ekman component of the surface velocity is not

negligible the surfaee layer is divided into two sub-layers. The upper sub-layer has constant

thickness and is directly acted upon by the wind. The SST is calculated separately through

a nonlinear equation, including three-dimensional advection, but it does not have a direct

feedback to the ocean dynamics. The atmospheric model is based on the steady-state, linear

model of a thermally forced tropical atmosphere (limited to a single vertical mode) of Gill

(1980). The forcing of the atmosphere is given by a local heating depending only on the

SST and a second term introduced to simulate the fact that the heating due to the low-level
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moisture convergenceanomaly is not dependenton the SST alone, but also on the wind

convergence(Zebiak 1986).

Due to the special role of SST, the different processesin the thermodynamic equation

havebeencarefully parameterized.The heat flux anomalyis assumedto be proportional to

the local SST anomaly,acting alwaysto damp the temperature towards its climatological

meanstate (ZebiakandCane1987). Thetemperatureis affectedby vertical advectiononly in

the presenceof upwelling. The entrained anomaloustemperature is definedby an analytical

equationthat is a function of the thermoclinemotions,adjustedto fit the observations(Cane

and Zebiak 1985).

The time-stepof the oceanmodel is 10days. As the atmosphericmodelgivesthe steady-

state solution associatedwith eachSST field, the atmospheremay adjust too rapidly to the

oceanchanges.To avoid this, the ZC modelallowsa time-dependencyof the moisture term

of the atmosphericheating. The changeof heating is computedevery time step. Then, the

assumedbackgroundconvergenceis the total convergenceat the previous time-step, rather

than the meanconvergenceasin the steady-statemodel. However,this procedurecouldallow

the developmentof small scaleanomaliesthat maypersist and becomecompletelyunrelated

to subsequentSSTfields ( Zebiak and Cane1987). It hasbeenshownthat the method used

to filter out theseunrealistic anomaliescan modify the behavior of the model. Zebiak and

Cane(1986)recalculatedthe atmosphericanomalieswhenthe temperature anomalies(given

by Nifio-3 SST) weresmall. This procedure favored a period of the warm events close to 4

years.

In spite of the success of the model to simulate and predict the evolution of the Nifio-3
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SST,the descriptiveskill of the modelcanbe seriouslyaffectedby its simplicity: the lack of

anyvariability generatedat the mid-latitudes, the absenceof the 30-60day waves(Caneet

al. 1986),the coarseresolutionof the model distorting the simulation of coastal upwelling

processesin the easternPacific (Caneand Zebiak 1985),and the simplified relation between

the atmosphericheating and SST (Zebiak 1986;Dewitte and Perigaud 1996). Therefore,

dynamical incompatibilities betweenthe modeland the observationscanbe important, par-

ticularly in the off equatorial region. This has a direct effect on assimilation algorithms.

For example, the nudging constant of Chenet al. (1995) has a meridional dependencyto

take accountof the fact that the winds generatedby the model are lessaccurateawayfrom

the equator. The nudging term gives moreweight to the observationsin the off-equatorial

regions,allowing the observationsto modify the physicsof the atmosphericmodel wherethe

model is lessaccurate.

a. The multivariate EOFs

The statistical properties of the coupled model are studied in terms of multivariate EOFs

of a set of states obtained from a control run of the model. The coupled model is integrated

from rest, with an initial wind stress anomaly of 0.5 dyn/cm 2 is imposed during the first

four months in the region 163°E - 163°W and 5°S - 5°N. After this period of time, the model

is integrated in a coupled manner for 200 years.

To compute a set of multivariate Empirical Orthogonal Functions (EOF), a multivariate

state vector is defined to express the state of the system:

x = (T, rx, ry, u, v, k, h, u_, v_, yO, q), (3)
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where T represents the sea surface temperature; rx and r u are the zonal and meridional

components of the wind stress; u_ and va are the zonal and meridional components of

surface wind; k is the amplitude of the equatorial Kelvin wave, h is the Rossby component

of the upper layer depth, u and v are the zonal and meridional components of the depth

integrated current anomalies between the thermocline and surface, yO is the surface wind

divergence and q is the atmospheric heating. All the variables are normalized by the mean

standard deviation of each one during the 200 years of simulation. The number of components

of the state vector (3) is 35457.

A set of 107 multivariate EOFs is constructed from the monthly mean states during

the last 115 years. Figure 3 shows the eigenvalue spectrum of the covariance matrix. The

95% confidence levels, indicated by the dashed line have been calculated from a Monte

Carlo simulation of 100 eigenvalue decomposition of individual covariance matrices contain-

ing randomly generated Gaussian variables of zero mean and unit variance (Overland and

Preisendorfer 1982). Only the first 12 multivariate EOFs pass the confidence level. That

is, this rule states that we cannot distinguish the multivariate EOFs of order higher than

12 from ones generated by a spatially and temporally uncorrelated random process. Such

a small number is due to the large amount of variability explained by the first few EOFs:

The first multivariate EOF explains 42% of the variability of the model during the 115 years

considered. The second and third EOFs explain more than 15% and 9% respectively. More

than 90% of the variability of the system is explained by the first 14 modes.

Figures 4-5 show the SST, wind stress, Kelvin amplitude and Rossby component associ-

ated with the first two multivariate EOFs. The first mode (when considered with positive
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sign) correspondsto a warming of the easternequatorial Pacific. The associatedwind stress

correspondsto a weakeningof the trades, i.e. a weakeningof the Walker circulation, while

the Hadley circulation is increasedin the easternPacific. Both effectstend to increasethe

wind convergenceeast of the dateline. This convergenceis maximum near ll0°W. In this

region, the Kelvin amplitude is maximum, correspondingto an increaseof the thermocline

depth. In this first multivariate mode, both Kelvin and Rossbycomponentsof the ther-

mocline act together to increasethe depth of the thermocline in the easternPacific and to

decreasethe depth of the thermocline in the western Pacific. The Kelvin waveassociated

with this mode representsa downwellingKelvin wavereachingthe easternboundary. The

Rossbywave correspondsto an upwelling waveoff the westernboundary. This pattern of

circulation is characteristicof the warm phaseof ENSO, the E1Nifio phenomenon(Battisti

1988).

The SST of the second multivariate EOF also corresponds to a warming of the surface

waters east of the dateline. The main differences with the SST pattern of the first EOF are

the lower amplitude of the warming, and the weak zonal gradients near the equator, compared

with the strong meridional gradients. This increase of the SST anomalies is not produced

by an east/west tilting of the thermocline, but rather a meridional structure corresponding

to an increase of the thermocline depth near the equator and a decrease at higher latitudes.

The zonal structure of the field is weak and concentrated mainly east of the dateline.

5. Compatibility between data and model

The assimilation experiments presented below use multivariate EOFs of the model to
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extrapolate the information from the availableobservations y° to eachcomponentof the

state vector x. As the observationscanbe incompatiblewith the simplified dynamicsof the

model, an a priori study of the compatibility between the observations and the dynamics of

the model is necessary. In this section, this is done in terms of the multivariate EOFs of the

system.

The observations do not give information about the full state vector x but only about a

small number of its components. Therefore, the classical principal component analysis cannot

be carried out. On the other hand, as the observations can be physically incompatible with

the model physics, a residual may be present when observations are expressed in terms of

the EOFs of the model.

Let x t be the true state of the ocean, -_ be the mean state of the model and S be the

matrix defined by the EOFs of the model. The true state can always be expressed as

x t =--_+ Stt+ e _, (4)

where/z is a vector with the amplitude of each element of the subspace defined by S. e _ is

the residual error. The only knowledge of the true state comes from the observations

yO= Hx'+ e °, (5)

where a linear relation is assumed between the observed value y° and the components of

the state vector.

defined by

e ° is the observation error.The innovation vector around the mean state is

d = y°- H-_. (6)
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Then, the innovation vector can be expressed as

d = H + a e', (7)

where He*= Her+ e °.

Equation (7) can be considered as a parametric definition of the error not accounted by

the subspace defined by S at the observation locations, H e', in terms of the coefficients p.

If we require that the two terms of equation (7) have no common information, i.e.,

(HS) r He* = 0, (8)

then, we obtain

( H s)T d = A/_ (9)

He*= [I- HSA-I(HS) T] d (10)

where A = ( H S) T H S is a r x r symmetric matrix.

Equation (9) is formally equivalent to the equation used by Smith et al. (1996) for

the least-square fitting of EOFs to ob'servations. This is due to the fact that condition (8)

minimizes the projection of the error onto the space defined by the EOFs. Therefore, this

method has the same disadvantages as the method of Smith et al. 1996), i.e., the projection

fails when the number of observations is not large enough (Kaplan et al. 1998).

Kaplan et al. (1998) discuss an alternative EOF fitting by the minimization of

S[/_] = (d - HS#) r R-l( d - HSg), (11)

where d is given by equation (6). The set of principal components minimizing (11) is the
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solution of

( H S) r R -1 d = A'/_,

where A' = (H S) r R -1 H S is also a r × r symmetric matrix.

(12)

In this case, the innova-

tion vector is split in two orthogonal terms with the inner product < a, b >= a r R -1 b.

Comparison equations (9) and (12) shows that both methods only differ on the metric of

the inner product. Finally, note that since the components of the state vector, equation (3),

have been normalized by the standard deviation of the model solutions, the estimates of the

obervational error variances (section 3) also have been normalized.

The subspace S is representative of observations if H S/z expresses the same information

as d. Therefore, we can define the representativity of S as the projection between the

innovation vector and H S#:

Rep = cos ( d, H S#), (13)

where the cosine is computed with respect to the chosen inner product.

Because of its definition (13), a representativity value of 1/v_ _ 0.71 means that the

innovation vector is equally projected over the EOF subspace and over its complementary.

That is, representativity values below 0.71 mean that the complementary space represents

the observations better than the EOF basis.

Equations (9)-(13) are applied to the monthly averaged maps of each gridded field

(Reynolds SST, FSU wind stress, and the Kelvin and Rossby modes of the thermocline

depth), and the value of p and R are computed using maps of FSU wind stresses from
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January 1961to December1998.

a. FSU wind stress

Figure 6 shows the temporal evolution of the representativity of the EOFs to describe

the spatial patterns of the FSU wind stress anomalies (from the 1961-92 climatology). In

this figure, two curves are shown. The solid one is obtained when the data are limited to

the band 10°S - 10°N, while the dotted line is obtained with 19°S - 19 °N data (i.e., the

maximum latitude at which the ZC model computes SST anomalies). The representativity

of the EOFs measures the ability of such a basis to fit the observations. Therefore, when

the number of basis functions increases or the number of observations decreases, better the

fit could be. Similarly, the representativity decreases when the data are extended to all the

model grid. However, the representativity of both data sets is clearly larger than the critical

value.

b. Reynolds SST

Figure 7 shows the representativity of the EOFs to describe the spatial patterns of the

Reynolds SST fields. The results show the high skill of the model to reconstruct the spatial

distribution of the SST, especially at low latitudes, where the mean representativity is .98.

If figures 6 and 7 are compared to the time evolution of the Nifio-3 SST, it can be observed

that the representativity is maximum at each culmination of warm and cold events and is

minimum at each rapid transition from one event to the other, specially when high latitudes

are considered (the representativity systematically diminishes before and after each event).

This behavior can be explained by the inherent variation of the noise to signal ratio, and by
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the fact that the parameters of the model have been adjusted to simulate the dynamics of

large warm events of the ENSO cycle.

c. Kelvin and Rossby modes of the thermocline depth

Figure 8 shows the variation of the representativity depending on the number of Rossby

modes used. Except for the last months, the maximum representativity is obtained when only

the first Rossby mode is combined with the Kelvin wave. Oscillations of the representativity

of the model are not directly related to the Nifio-3 SST index, and a period of stable high

representativity appears between middle 1995 to the end of 1996, a period quite calm in

terms of Nifio-3 variations.

As in the case of winds and the SST, the representativity decreases when information at

the high latitudes is considered by the use of higher Rossby modes. The mean representativity

decreases from .98 when 1 or 2 Rossby modes are used to 0.96 when 5 or 10 modes are used.

To ensure the compatibility between the physics of the model and the observations, only

the first two Rossby modes will be retained. This does not represent too much loss of

information in the 10°S - 10°N band. For example, figure 9 shows the thermocline depth

in December 1998 derived from sea level (Fig. 9a), and reconstructed by the Kelvin and

the two first Rossby modes (Fig. 9b). The first two modes are sufficient to describe most

of the spatial structure of the thermocline depth. Similarly, the comparison between the

Nifio-3 and Nifio-4 values of the thermocline depth reconstructed using the Kelvin and the

first Rossby mode (not shown) and Fig. lc are indistinguishable.

d. Combining observations
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The degradation of the representativity of the model when multiple data fields are con-

sidered simultaneously is shown in Fig. 10. The best interdependency accounted by the ZC

corresponds to the link between the thermocline depth and the SST (dashed line). The lesser

skill of the model to account for the spatial patterns of the wind stress and the thermocline

depth is clear as well (dotted line), specially during year 1994.

When all the observed fields are considered together, the mean representativity of the

model decreases to 0.88, considerably smaller than the representativity of the model when

each field is considered alone, but still higher than the critical value.

Finally, Fig. 11 provides an example of the compatibility between observations of SST

and oceanic equatorial waves with the physics of the model. Compared are the observed

value of the Nifio-3 index with the index associated to the SST anomaly field derived from

the EOF projection to observations of the Kelvin and first Rossby modes. The strong

similarities between both curves suggests that the ocean model captures the basic relationship

between thermocline depth and SST in the eastern equatorial Pacific. This result also shows

the significance of the Kelvin and first Rossby wave to determine the current state of the

thermocline depth over that region.

As a conclusion, in spite of the strong simplifications of the ZC model, and its well known

limitations to locate correctly some spatial features of the physical fields (Zebiak 1986; Cane

et al. 1986; Dewitte and Perigaud 1996), the ZC model is relatively adept at representing

the covariability of the wind stress, the SST and the thermocline depth when observations

are limited to low latitudes, and the thermocline depth is introduced as a function of the
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6. The assimilation method

a. The reduced order Kalman Filter

The reduced order Kalman Filter (ROKF) used in this work is based on SEEK (Singular

Evolutive Extended Kalman Filter, Pham et al. 1998) equations. The SEEK filter is a

sub-optimal version of the Kalman Filter (Kalman and Bucy 1960) based on two hypothesis:

the reduced rank of the error covariance matrices, and the conservation of the rank in time.

Although these hypothesis cannot be justified for a nonlinear system, the SEEK filter has

been used successfully to assimilate T/P SSH into a primitive equation tropical Pacific ocean

model (Verron et al. 1999), and to reconstruct the mesoscale circulation of the mid-latitude

western Atlantic circulation (Brasseur et al. 1999).

Analysis-step equations of the SEEK filter are directly derived from the analysis equations

of the Kalman filter by expressing the error covariance matrix, P J, at time tk, as

Pk] = SkAkS_-, (14)

where subindex k refers to the time tk. If n is the number of components of the state vector

(3), then matrices Pk], Sk, and Ak, are of order n. However, if the rank of P{ is r, only r

columns of matrices Sk and Ak should be retained. Thus, the numerical cost of the analysis

step is reduced if the Kalman filter equations are expressed in terms of the r-dimensional

space defined by the columns of Sk.

Following the notation recommended by Ide et al. (1997), if y_ represents a set of

observations at time tk, and x_ is the current guess of the system state, the new estimate
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of the state of the system,x_, is obtained usingequations(seePham et al. 1998):

Ak+l-----[Ak'l -[- (HkSk) T RklHksk]

Kk = SkAk+x (Hk Sk) T Rk 1,

o , [x k = x k+ Kk y_-- Hkx ,

-1

P_ = SkAk+l S_-,

(15)

(16)

(17)

(18)

where H is the observation matrix, relating the components of the state vector (3) with the

observations yO. The relative weight of the first guess and the observations is given by the

gain matrix Kk, which depends on error covariance matrices P{ (estimation of the error of

x f) and Rk (estimation of the error of yO). Equations (15)-(18) are valid in the measure

that equation (14) is valid.

Under the hypothesis that the model is linear and exact, the rank of the error covariance

matrix is constant in time, and the the time evolution of Pf depends only on the time

evolution of the columns of Sk (Pham et al. 1998). Then, the forecast-step of the Kalman

Filter can be rewritten as:

z _ (19)xk+ 1 = Mxk,

Sk+ 1 = MSk, (20)

f T (21)Pk+x = Sk+lAk+l Sk+ 1.

The generalization of equations (19)-(21) to a non-linear, non-perfect model is not straight-

forward because the rank of the covariance matrices may not be conserved in time, because

of the dynamical coupling between the space defined by Sk and its null-space, i.e., equation
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(21) is not longervalid. Moreover,becauseof the nonlinearity of the model, equation (20)

cannot be solved explicitly, and only an approximation of the time evolution of the sub-space

basis can be obtained.

These facts lead us to use an alternative method of equations (20)-(21). Let dk be the

innovation vector at time tk, about the current forecast of the state of the system

dk = y_- Hx_. (22)

It can be shown that

E[dkd/] = HP_H v+ Rk (23)

= HSAk(HS) v + R E (24)

where R_ contains both the observational error covariance and the error covariance on the

null-space of S (Cane et al. 1996). Now, if equations (7)-(9) are used, we obtain

dkd[= HS#ka[(HS) r + He*e*TH T (25)

because of the orthogonality of the decomposition of the innovation vector. Note that the

residual vector e* is a function of the observational error an(t the error not accounted by the

subspace defined by S.

Because of the similarity between equations (24) and (25), we use pkIJ-[ as an ad hoc ap-

proximation of the error covariance on the analysis subspace, Ak. Two relationships between

#k and Ak are used here.

or

Ak = diag(#kp[),

1 k

(26)

(27)
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In any case, this methodology allows us to compute a non-stationary, non-diagonal es-

timate of the forecast error covariance matrix SAk S T. By using equation (26) or (27), the

parameterization of the dynamical coupling between the subspace defined by S and its com-

plementary, and the error of the model, are not necessary because Ak comes directly from

the current misfit between the observations and the current state of the system.

In summary, the ROKF algorithm uses equation (19) to obtain the current state of the

system. Equations (22), (7)-(9) are used to compute the set of principal components sk for

the estimation of the current forecast error covariance by equations (26) or (27). Finally,

equations (15)-(17) are used to correct the state of the system.

b. Nudging the surface wind stress

The performance of the reduced order KF will be compared with the performance of

the nudging of surface wind stress in the equation for wind stresses. The method used

here replicates the method proposed by Chen et al. (1995). That is, at each time step the

anomalous model wind stress r = (r_, T_) is substituted by aro + (1 -- a)T, where 7-o is the

observed anomalous wind stress. Following Chen et al. (1995), q is a function of the latitude.

In our experience of assimilation, _ is a linear function of the latitude, with a value of 0.25

near the equator, and increasing by 0.1 per grid point up to the latitude where it attains the

value 0.55, which is then held constant. That is, the model winds are given more weight in

the equatorial region and less weight in the higher latitudes.

Neither nudging or the Kalman filter use the hypothesis of a perfect model. In the case

of nudging, a new term is introduced into the dynamical equations in order to correct the

output of the model. As this term is linear by respect the corrected field, the behavior of
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the model dynamics is linearized when the data-model misfits are important. On the other

hand, in the present application, the nudging of the wind stress does not modify the value

of the prognostic fields (the Kelvin amplitude, and the Rossby component of the upper layer

depth anomaly), but its forcing term. That is, nudging does not modify the current state

of the system, but its ulterior time evolution. This approach strongly reduces the possible

dynamical imbalances between the prognostic fields. On the contrary, algorithms based on

the Kalman filter compute the dynamical evolution of the system with no relaxation term,

allowing the full development of the nonlinearities of the dynamics. Account for the model

error is done by computing an estimate about the error of the new system state. Therefore,

misstatements in the determination of such an error are allowed to propagate in a nonlinear

way, contaminating all the dynamical scales of the system. On the other hand, all the

components of the system are updated by equation (17). This allows a potential way for a

faster extrapolation of the information from observations to all the variables of the model,

but also increases the risk of dynamical imbalances, i.e. initialization shocks may exist after

each assimilation step.

7. Model initialization experiments

A set of assimilation experiments, using both nudging of the wind stress and the ROKF

presented in the previous section, are performed in order to obtain the initial conditions to

predict the time evolution of the Nifio-3 SST index.

Topex/Poseidon data is available since October 1992. Then, prediction experiments

are restricted to the period January 1993 - December 1998. Note that the goal of these
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experimentsis to examinethepotential of a ROKF to assimilate,directly and simultaneously,

different typesof data into the ZC model, but not to give an exhaustivecomparisonbetween

different assimilationmethods(this would require longertime series,including severalwarm

and cold events).

Nudging and ROKF alsodiffer in the temporal distribution of the observationsusedto

identify the state of the system. In the caseof nudging, the coupled model is integrated

from January 1961until the initial time for the forecast.During this period, the modelwind

stressis relaxedtowards the observations.Thus, the final state is usedas initial conditions

for the prediction of ENSO. This meansthat initial conditions for ENSO forecastsare a

function of the state of the systemfrom 1961.On the contrary, the ROKF is initialized on

October 1992with the long term meananomalyof the model. Then, observationsareused

to give a first estimateof the state of the systemat this time. Then, sequentialassimilation

cyclesare doneuntil reachingthe initial time for the forecasts.

Initial statesfor 15-monthENSO forecastsare computedeachmonth from January 1993

to December1998. ENSO forecastsarecomparedwith observationsvia the NINO 3 index.

The correlation and the root meansquare(RMS) of the error betweenthe predicted values

and the observations,areusedto assessthe performanceof the initialization.

a. Nudging the wind stress

The first experiment presented here uses the nudging method to retrieve the initial condi-

tions for ENSO forecasts, and thereby establish a baseline for the ROKF experiments. Wind

observations are considered on the model grid, that is between 19°S - 19°N, and are the only

data assimilated.
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Figure 12 displays Nifio-3 index forecasts with these experiments. The thick solid line

represents the hindcast Nifio-3 SST index, the thin solid lines show the 15 month forecasts,

and the dashed-line indicates the observed value. The curves show low correlation between

hindcasts and observations during the whole period under consideration, indicating that

nudging of the wind stress is not able to reproduce the temperature of the eastern Pacific.

Forecasts without assimilation (thin solid lines) show little dispersion by respect the time

evolution with assimilation (thick solid line), indicating small impact of new observations

onto the evolution of the system, i.e., a strong inertia of the model. This explains the delay

to identify the onset and the climax of the 1997 warm episode.

Figure 13 compares the correlation and RMS error for different lead time predictions

with the initialized model, and the Nifio-3 persistence. Zero lead time represents the initial-

ization time. The results show the small correlations at short lead times, errors greater than

persistence for lead times shorter than 8 months, and better than persistence for longer lead

times.

b. Reduced Order Kalman Filter

The ROKF is now used to assimilate simultaneously wind stress, SST and the Kelvin

and the first Rossby mode of the thermocline depth into the ZC model. As the assimilation

procedure starts in October 1992, the assimilation results might still be very sensitive to the

initial conditions. As before, each analyzed field is saved to be used as initial conditions for

a fifteen-month forecast.

Initialization experiments are performed with different values of r, i.e. with different

number of multivariate EOFs. The correlation between the observations and the associated
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lead time forecastsis displayedin Fig. 14(a). This plot showsthe correlations for values

of r ranging from one to seventy. The plot also displays the correlation obtained with the

nudging initialization. The ROKF initialization is providing higher correlation at short time

leads than nudging does. This is related to the fact that SST observations are being now

assimilated. The most striking feature of these results is that the method is robust only for

lead times up to 4 or 5 months. This fact may be related to the results of Goswami and

Shukla (1991) who found that the growth of small initial errors in the ZC coupled model

is governed by processes with two well-separated time scales. The fast time scale process

induces error doubling scales of about 5 months. The slow time scales induces error doubling

scales of about 15 months. Therefore, even if the ROKF seems to be able to identify the

current state of the system (high correlation at the initial time), the method is unable to

capture the fast-growing error components, and the correlation between the prediction states

and observations diminishes for lead times longer than the doubling scales of such errors.

Different initialization experiments of the coupled model have been performed by using a

non-diagonal Ak (equation (27)) instead of a diagonal matrix (equation (26)), or by using the

error-metric, equation (12), instead of the identity metric, equation (9); or by assimilating

SST observations distributed over all the model grid instead of SST observations limited

within the band [10°S-10°N]. In all the cases, the robustness of the method is limited to 4

to 5 months. As an example, Fig. 14(b) displays the correlation between observations and

forecast for one of these initialization experiments, for which equations (27), (12) have been

used to assimilate observations with SST observations distributed over all the model grid.

The comparison of both panels of Fig. 14 shows several common features. Note that
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high prediction skill of the month-to-month predictions is obtained by using a small number

of modes (7 EOFs), and the use of higher order, non statistically significant modes does not

improve the correlation for such short-term forecasts. The fact that seven modes are enough

to reach a high correlation skill, is explained by the high amount of variance explained by

the first modes, so the basic structure of the state of the system is recovered by using a

small number of modes. However, the rapid decrease of the correlation between forecasts

and observations indicates that these modes are not able to identify the time evolution of

the system. Higher order modes are necessary to extend the lead times of the predictions,

indicating that the lead order EOF modes capture the stationary variance of the fields, but

not its time evolution.

Another common feature of all these initialization experiments is the fact that there

always exists a range of optimal values for the number of EOFs providing high forecast-

observation correlation values for lead times ranging from 9 to 15 months. In all the ex-

periments, the range of optimal values is always located between 40-60 modes, consisting of

more than one single value, which implies that such high correlations are not due to chance.

Figure 15 shows ENSO predictions obtained by initialization experiments using 20 EOFs

(Fig. 15(a)), and 47 EOFs (Fig. 15(b)). In these experiments, equations (9), and (26)

are used, and SST observations are extended until 19°S - 19°N. Hereafter these experiments

are cited as r20 and r47. Comparing the thick solid line on Figs. 15(a) and 15(b), it can

be noticed that the initial conditions of the prediction experiments become closer to the

observed value as the number of modes increases.

The main shortcoming of the r20 initialization is the inability of the forecasts to identify
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the termination of warm events, specially at the end of 1993, or at the end of 1998. To

determine the reason for this, we compare the initial conditions given by these initialization

experiments. Figure 16 shows the difference between r20 and r47. Fields with differences

larger than two standard deviations are the zonal wind stress and the Kelvin wave amplitude.

The impact of these differences has been examined by resetting to zero the wind stress

components or the Kelvin amplitude of the initial conditions provided by the experiment

r47. The correlation and the error RMS of these experiments are shown in Fig. 17. Note the

small impact of resetting the wind stress to zero on the prediction skill of the solutions, and

the larger impact of resetting the Kelvin amplitude. This behavior was expected because the

oceanic Kelvin wave is one of the prognostic variables of the model, while the atmospheric

model mainly depends on the current SST distribution. Examining the initial Kelvin and

Rossby fields in experiment r20 (not shown), it was found that both fields were too weak near

the western boundary (Fig 16 shows that the differences of the Rossby waves are generally

large there). Then, both propagation of the Kelvin wave as well as the boundary reflection

of Rossby waves, provide too weak Kelvin waves that rapidly contaminate the solution at the

central and eastern equatorial Pacific. Note that the failure of the lead multivariate EOFs

to reconstruct the required wave amplitudes is directly related to one of the well known

properties of the model, i.e. the weak variability of the coupled model west of the dateline

(Cane et al. 1986).

Initial conditions obtained with the r47 experiment are shown in Fig. 18. Note that the

region, near the western boundary of the system, with no observations of Kelvin and Rossby

waves (see Fig. 1), has now been filled (Fig. 18), according to the dynamics of the model, i.e.,
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the delayedoscillator mechanism.All fields showa good agreementwith the observations,

even if, as discussedbefore, noneof the reconstructedfields displays the variability of the

observationnear the westernboundary. Forecastsfrom these initial conditions successfully

predict the warm eventof 1997-98by identifying its onset,rapid increaseof the temperature,

amplitude of the event,and its duration. ForecastssinceMay 1996predict a warm eventfor

the 1997,indicating that preconditionsof suchaneventmaybepresentin the tropical Pacific

at leastfifteen monthsprior to theevent,in agreementwith the remarksof McPhadenandYu

(1999). Theseexperimentsalsoindicatethat anonlinear,coupledmodelbasedon the delayed

oscillator may generatethe correct amplitude of the warm event starting from conditions

before November1996,the time when wind anomaliesassociatedwith the Madden-Julian

Oscillation appear. Suchanomalieshavebeensuggestedasbeing important for the timing

and amplitude of the event (McPhadenand Yu 1999).

1) Sensitivity to the waveerrors

The error of the Kelvin and Rossbymodeshavebeendeterminedby assumingthat the

reducedgravity approachis strictly verified over the band [10°S-10]degN](seesection 3).

The sensitivity of the results to thesevalueshasalso been examined. This has beendone

with six additional experiments. In thesenew model initializations, the Kelvin and Rossby

errors havebeen,separatelyor simultaneously,increased(and diminished) 20%of the value

given in section 3.

Theresults,not shown,showsmall impact to changeson theerror estimatesfor the Kelvin

and Rossbymodes. Results are almost insensitive to changeson Rossby error estimates

becauseof the large number of observations,2378,being assimilated. Results are slightly
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moresensitiveto changesin the Kelvin error estimate. When the Kelvin error estimate is

increased20%, the skill of the forecastsdiminishesfor 6 to 8 month lead time predictions,

but remain unchangedfor higher lead times. However,when the Kelvin error estimate is

reduced20%,wehave noticed a morenoticeabledecreaseof the skill of the predictions for

lead-timeslarger than 12months. Thus, the Kelvin error estimate is low enoughto provide

an estimateof the thermoclinestructure over the equator, but is large enoughto avoid an

overfitting that degradesthe prediction for interanual time scales.

8. Summary

A simplifiedreducedorder KalmanFilter hasbeenappliedto the coupledocean-atmosphere

nonlinearmodelof Zebiakand Cane. The multivariate EOFs of the coupledmodel areused

to reducethe dimensionof the problem. In the caseof the state vectorusedin this work, the

sizeof the covariancematrices P usedby the classicKalman filter is 5 Gb. When the ROKF

is usedwith r = 100, the size of the matrices S and A is 14 Mb and 40 Kb respectively. The

ROKF is used to assimilate fields of the SST, surface wind stresses and thermocline depth

(derived from the T/P sea level) i_to the coupled model every month.

Projecting the Kalman Filter equations onto the multivariate EOFs of the model means

that, although incomplete, the physics of the model is used to reduce the degrees of freedom

of the KF algorithm. To ensure a relative compatibility with the model, observations are

limited to the band 10°N - 10 °S. A representativity study shows that the ability of the EOFs

to account for the covariability of the observed fields decreases at high latitudes.

The numerical cost of the filter is highly reduced by computing an estimate of the forecast
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covariance matrix, on the subspace defined by the multivariate EOFs, from the available

observations. On the other hand, as the time evolution of A comes from the observations

instead of being computed by the time evolution of the error covariance matrix, the dynamical

interaction between the EOF subspace and its nullspace has been avoided.

The prediction skill of the forecasts initialized from the outputs of the filter has been

compared to persistence and the nudging of surface wind stress. The forecasts obtained

from the filter show higher correlations with observations than the results coming from the

nudging experiment for all lead times. However, the method is robust, to changes in the

number of EOFs for forecasts shorter than 4 to 5 months, indicating that the method is not

able to identify the error associated with the fast error modes of the model described by

Ooswami and Shukla (1991). The evolution of the forecast skill as a function of the number

of modes is insensitive to changes in the metric used to fit the EOFs to the observations,

and to how the current value of A is constructed. Therefore, such a limit may be related to

the nature of the basis functions, i.e. the multivariate EOFs. These functions describe the

stationary modes of variance of the fields rather than the time evolution of perturbations of

the system. Therefore, a natural extension of the present work is the use of basis of functions

accounting for the dynamic evolution of the fields, as the singular vectors of the transition

operator of the ZC model, or the evolutive version of the SEEK filter, allowing the time

evolution of the matrix S.

Besides the inability of the EOF basis to capture the growing errors of the coupled

model, the failure of the lead EOFs to provide initial states containing sufficient information

to identify the actual evolution of the system is related to known shortcomings of the physical
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model itself. Thus, a common feature of all the experiments performed by the authors is

that the optimal number of EOFs is always larger than the number of modes passing the

statistical significance test of Overland and Preisendorfer (1982).

Despite the fact that the filter has been shown to be robust for time scales shorter than

4-5 months, the filter has provided initial conditions of the tropical Pacific, predicting the

onset of the 1997-98 warm event fifteen months before its occurrence. These predictions

start from states prior to the first westerly wind burst associated with the Madden-Julian

oscillation, often suggested as a triggering mechanism for the onset of warm events. Such a

result indicates the possibility that the delayed oscillator mechanism may itself be the origin

of the correct amplitude of the 1997-98 E1 Nifio event.
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Figure Captions

Figure 1: Longitude-time for observed fields of zonal wind stress, Kelvin amplitude, first

Rossby mode, and sea surface temperature. Plots dispay averaged values over the band

[5°S-5°N1.

Figure 2: Convergence of the error of the Kelvin wave amplitude and the error of the Rossby

field as the number of Rossby modes increases.

Figure 3: Eigenvalue spectrum of the multivariate EOFs of the coupled model of Zebiak and

Cane. Also shown are the 95% confidence levels (dashed line) from a Monte Carlo simulation.
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Figure 4: First multivariate EOF: (a) Sea Surface temperature anomaly. (b) Surface wind

stress anomaly. (c) Zonal variability of the equatorial Kelvin wave. (d) Rossby component

of the upper layer depth anomaly. Units are standard deviations.

Figure 5: Second multivariate EOF: (a) Sea Surface temperature anomaly. (b) Surface wind

stress anomaly. (c) Zonal variability of the equatorial Kelvin wave. (d) Rossby component

of the upper layer depth anomaly. Units are standard deviations.

Figure 6: Ability of the multivariate EOFs to represent the spatial structure of the FSU

wind stress during the period Jan 1961 to Dec 1998. Solid line: data is limited to the band

10°S - 10°N. Dotted line: data is for the band 19°S - 19°N.

Figure 7: Ability of the multivariate EOFs to represent the spatial structure of the Reynolds

SST during the period Nov 1981 to Dec 1998. Solid line: data is limited to the band 10°S -

10°N. Dotted line: data is on the band 19°S - 19°N.

Figure 8: Ability of the multivariate EOFs to represent the spatial structure of the ther-

mocline depth derived from Topex/Poseidon sea surface topography during the period Oct

1992 to Dec 1998. The maps of thermocline depth are decomposed in terms of meridional

equatorial modes. The different representativity with different number of different Rossby

modes (in addition to the Kelvin mode) is shown.

Figure 9: Spatial structure of the thermocline depth monthly anomaly in December 1998.

(a) Derived from Topex/Poseidon sea surface level. (b) Reconstructed from the wave de-

composition of the previous field. The modes used are the Kelvin and the two first Rossby

modes. Amplitude in cm.
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Figure 10: Ability of the multivariate EOFs to representthe spatial structure of all the data

combinedduring the period Oct 1992to Dec 1998.

Figure 11: NII_O 3 index derived from observations(red line), and derived by projecting

the sealevel (Kelvin and first Rossbymode) observationsonto the SSTvia the multivariate

EOFs of the model (black line).

Figure 12: 15-monthforecastof the NII_IO3SST index. The thick solid line is associatedto

the initial conditions. Dashedline is the observedvalue. Thin solid linesshowthe evolution

of forecastsstarting every month. The initialization experiment is done by nudging the

surfacewind stress.

Figure 13: Forecastskill measuredby the correlation (a), and the RMS error (b), between

predicted and observedNINO3 SST index from January 1993through December1998.The

initialization experimentis doneby nudging the surfacewind stress.

Figure 14: Forecastskill measuredby the correlation betweenpredictedand observedNII_IO3

SST index from January 1993through December1998.The number of EOFs usedwith the

ROKF rangesfrom oneto seventy.The ordinate axis representsthe lead time (in months).

(a) SSTobservationsare limited to the band [10°S-10°N],and the identity metric is usedto

fit the EOFs to the data. (b) SSTobservationsareassimilatedover all the model grid, and

the metric of the data-EOF fitting is given by the inverseof the error covariancematrix.
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Figure 15: 15-month forecast of the NINO3 SST index. The thick solid line is associated to

the initial conditions. Dashed line is the observed value. Thin solid lines show the evolution

of forecasts starting every month. The ROKF with 20 EOFs (a), and 47 EOFs (b) are used.

The metric is the identity matrix, Ak diag(sk r= s k), and SST is assimilated over all the

model grid.

Figure 16: Longitude-time plots of the difference between r20 and r47, averaged over the

band [5°S-5°N].

Figure 17: Forecast skill measured by the correlation (a), and the RMS error (b), between

predicted and observed NIlqO3 SST index from January 1993 through December 1998. The

solid line corresponds to the experiment r47. Dashed line is obtained when the initial state

resulting from experiment r47 is modified by resetting to zero the surface wind stress. The

dash-dot line is obtained as before but resetting to zero the Kelvin wave amplitude.

Figure 18: Longitude-time plots of the initial conditions given by experiment r47, averaged

over the band [5°S-5°N].
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